NS-24T01FS
24-Port 10/100Mbps
Fast Ethernet
Smart Switch

User's Guide

FCC Warning

This equipment has been tested and found to comply with the regulations for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with this user's guide, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his/her own expense.

VCCI Warning

This is a product of VCCI Class A Compliance.

CE Mark Warning

This is a Class A product. In a domestic environment, this product may cause radio interference, in which case the user may be required to take adequate measures.

Australian C-Tick Compliant

UL Warning

a) Elevated Operating Ambient Temperature- If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).
b) Reduced Air Flow- Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.
c) Mechanical Loading- Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.
d) Circuit Overloading- Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of circuits might have on over current protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.
e) Reliable Earthing- Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g., use of power strips).

P/N:1907SMSW24B7280

Comme
Safety W

Table of Contents

ABOUT THIS GUIDE

Purpose 1
TERMS/USAGE 1
INTRODUCTION 3
Fast Ethernet Technology 3
Switching Technology 4
VLAN (Virtual Local Area Network) 5
FEATURES 6
UNPACKING AND INSTALLATION 7
UnPACKING 7
INSTALLATION 8
Rack Mounting 9
Connecting Network Cable 10
AC POWER 10
IDENTIFYING EXTERNAL COMPONENTS 11
Front Panel 11
Rear Panel 12
UNDERSTANDING LED INDICATORS 13
Power and System LEDs 13
Ports 1~24 Status LEDs 14
Fibre Module LEDs 14
CONFIGURATION 15
CONSOLE PORT (RS-232 DCE) 15
Configuring the Switch 18
Login 19
Main Menu 20
Configuring Setup Setting 21
Configuring System Setting 26
Configuring File Setting. 27
Statistics 28
TECHNICAL SPECIFICATIONS 30

about This Guide

Congratulations on your purchase of your Alloy 24-Port 10/100Mbps Fast Ethernet Smart Switch. This device integrates 100 Mbps Fast Ethernet and 10 Mbps Ethernet network capabilities in a highly flexible package.

Purpose

This guide discusses how to install your 24 -Port $10 / 100 \mathrm{Mbps}$ Fast Ethernet Smart Switch.

Terms/Usage

In this guide, the term "Switch" (first letter upper case) refers to your 24 -Port $10 / 100 \mathrm{Mbps}$ Fast Ethernet Smart Switch, and "switch" (first letter lower case) refers to other Ethernet switches.

Introduction

This chapter describes the features of the 24 -Port $10 / 100 \mathrm{Mbps}$ Fast Ethernet Smart Switch and some background information about Ethernet/Fast Ethernet switching technology.

Fast Ethernet Technology

The growing importance of LANs and the increasing complexity of desktop computing applications are fueling the need for high performance networks. A number of high-speed LAN technologies have been proposed to provide greater bandwidth and improve client/server response times. Among them, 100BASE-T (Fast Ethernet) provides a non-disruptive, smooth evolution from the current 10BASE-T technology. The nondisruptive and smooth evolution nature, and the dominating potential market base, virtually guarantee cost-effective and high performance Fast Ethernet solutions.

100Mbps Fast Ethernet is a standard specified by the IEEE 802.3 LAN committee. It is an extension of the 10 Mbps Ethernet standard with the ability to transmit and receive data at 100 Mbps , while maintaining the CSMA/CD Ethernet protocol. Since the 100 Mbps Fast Ethernet is compatible with all other 10 Mbps Ethernet environments, it provides a straightforward upgrade and takes advantage of the existing investment in hardware, software, and personnel training.

Switching Technology
Another approach to pushing beyond the limits of Ethernet technology is the development of switching technology. A switch bridges Ethernet packets at the MAC address level of the Ethernet protocol transmitting among connected Ethernet or Fast Ethernet LAN segments.

Switching is a cost-effective way of increasing the total network capacity available to users on a local area network. A switch increases capacity and decreases network loading by dividing a local area network into different segments, which don't compete with each other for network transmission capacity.

The switch acts as a high-speed selective bridge between the individual segments. The switch, without interfering with any other segments, automatically forwards traffic that needs to go from one segment to another. By doing this the total network capacity is multiplied, while still maintaining the same network cabling and adapter cards.

Switching LAN technology is a marked improvement over the previous generation of network bridges, which were characterized by higher latencies. Routers have also been used to segment local area networks, but the cost of a router, the setup and maintenance required make routers relatively impractical. Today switches are an ideal solution to most kinds of local area network congestion problems.

VLAN (Virtual Local Area Network)

A VLAN is a group of end-stations that are not constrained by their physical location and can communicate as if in a common broadcast domain, a LAN. The primary utility of using VLAN is to reduce latency and need for routers, using faster switching instead. Other VLAN utility include:

$>$ Security

Security is increased with the reduction of opportunity in eavesdropping on a broadcast network because data will be switched to only those confidential users within the VLAN.

> Cost Reduction

VLANs can be used to create multiple broadcast domains, thus eliminating the need of expensive routers.

Port-based (or port-group) VLAN is the common method of implementing a VLAN, and is the one implimented in the Switch. Each Switch port can belong to one or more of up to twenty four VLANs.

Features
$\mathbf{2 4} \times \mathbf{1 0} / \mathbf{1 0 0 M b p s}$ Auto-negotiation Ethernet ports
$>$ All ports support auto MDI/MDIX, so there is no need to use cross-over cables or an up-link port
$>$ Full/half duplex transfer mode for each port
$>\quad$ Wire speed reception and transmission
$>$ Store-and-Forward switching scheme capability to support rate adaptation and ensure data integrity
$>$ Broadcast storm protection
$>\quad$ Up to $4 K$ unicast addresses entities per device, selflearning, and table aging
> 256KBytes on-chip packet buffer for each eight ports
$>$ Supports IEEE 802.3x flow control for full-duplex mode ports
$>$ Supports Back-pressure flow control for half-duplex mode ports
> Optional one port 100BASE-FX Fibre module in the rear panel for length extension
$>\quad$ Supports Port-base VLAN and IEEE 802.1p QoS
RS-232 DCE console port for setting up and manage the Switch via connection to a console terminal or PC using a terminal emulation program

Standard 19" Rack-mount size
 UNPACKING AND INSTALLATION

This chapter provides unpacking and setup information for the Switch.

Unpacking

Open the shipping cartons of the Switch and carefully unpacks its contents. The carton should contain the following items:
$>$ One 24-Port 10/100Mbps Fast Ethernet Smart Switch
> One AC power cord, suitable for your area's electrical power connections
$>\quad$ Four rubber feet to be used for shock cushioning
$>$ Screws and two mounting brackets
> One console cable
> This User's Guide
If any item is found missing or damaged, please contact your local reseller for replacement.

Installation

The site where you install the hub stack may greatly affect its performance. When installing, consider the following pointers:
$>$ Install the Switch in a fairly cool and dry place. See Technical Specifications for the acceptable temperature and humidity operating ranges.

Install the Switch in a site free from strong electromagnetic field generators (such as motors), vibration, dust, and direct exposure to sunlight.
$>$ Leave at least 10 cm of space at the front and rear of the hub for ventilation.
$>$ Install the Switch on a sturdy, level surface that can support its weight, or in an EIA standard-size equipment rack. For information on rack installation, see the next section, Rack Mounting.
> When installing the Switch on a level surface, attach the rubber feet to the bottom of each device. The rubber feet cushion the hub and protect the hub case from scratching.

Rack Mounting

The switch can be mounted in an EIA standard-size, 19-inch rack, which can be placed in a wiring closet with other equipment. Attach the mounting brackets at the switch's front panel (one on each side), and secure them with the provided screws.

Figure 1. Combine the Switch with the provided screws
Then, use screws provided with the equipment rack to mount each switch in the rack.

Figure 2. Mount the Switch in the rack

Connecting Network Cable

The Switch supports 10 Mbps Ethernet or 100 Mbps Fast Ethernet and it runs both in half and full duplex modes.

These ports are Auto-MDI type port. The Switch can auto transform to MDI-II or MDI-X type, so you can just make an easy connection that without worrying if you are using a standard or crossover cable.

AC Power

The Switch can be used with an AC power supply of $100 \sim 240 \mathrm{~V}$ $\mathrm{AC}, 50 \sim 60 \mathrm{~Hz}$. The power switch is located at the rear of the unit adjacent to the AC power connector and the system fan. The switch's power supply will adjust to the local power source
automatically and may be turned on without having any or all LAN segment cables connected.

Identifying External Components

This chapter describes the front panel, rear panel, and LED indicators of the Switch.

Front Panel

The figure below shows the front panels of the Switch.

Figure 3. Front panel of 24 -port $10 / 100 \mathrm{Mbps}$ Fast Ethernet Switch

LED Indicator

Comprehensive LED indicators display the status of the switch and the network (see the $L E D$ Indicators chapter below).

10/100BASE-T Twisted-Pair Ports

These ports support network speeds of either 10 Mbps or 100 Mbps , and can operate in half- and full- duplex transfer modes. These ports also supports automatic MDI/MDIX crossover detection function gives true "plug and play" capability, just need to plug-in the network cable to the hub directly and don't care if the end node is NIC (Network Interface Card) or switch and hub.

Console Port

An RS-232 DCE console port is set up and managed the switch via a connection to a console terminal or PC using a terminal emulation program.

Rear Panel

Figure 4. Rear panel of the Switch

AC Power Connector

This is a three-pronged (IEC) connector that supports the power cord. Plug the female connector of the provided power cord into this connector, and the male into a power outlet. Supported input voltages range from $100 \sim 240 \mathrm{~V} \mathrm{AC}$ at $50 \sim 60 \mathrm{~Hz}$.

Understanding LED Indicators

The front panel LEDs provides instant status feedback, and, helps monitor and troubleshoot when needed.

Figure 5. LED indicators of the Switch

Power and System LEDs

POWER: Power Indicator

On $:$	When the Power LED lights on, the Switch is receiving power.

| Off $:$ | When the Power turns off or the power cord has improper
 connection. |
| :--- | :--- | :--- |

SYSTEM: Management Indicator

Blinking	$:$
When the CPU is working, the System LED is blinking.	
On/Off	$:$

Ports 1~24 Status LEDs

Link/ACT: Link/Activity

On	$:$				
When the Link/ACT LED lights on, the respective port is					
successfully connected to an Ethernet network.		$	$	Blinking	$:$
:---	:---				
When the Link/ACT LED is blinking, the port is transmitting or receiving data on the Ethernet network.					
Off	$:$				
No link.					

100Mbps

$\left.$| On | $:$ |
| :--- | :--- | | When the 100Mbps LED lights on, the respective port is |
| :--- |
| connected to a 100Mbps Fast Ethernet network. | \right\rvert\, | Off | When the respective port is connected to a 10Mbps Ethernet
 network |
| :--- | :--- |

Fibre Module LEDs
FX Link/ACT: Link/Activity

On	$:$
When the fibre module is installed and connected to an Ethernet network, the FX Link/ACT LED lights on.	
Blinking $:$	When the FX Link/ACT LED is blinking, the fibre module is transmitting or receiving data on an Ethernet network.
Off	$:$
No link.	

FDX: Full Duplex

On	$:$	When the FDX LED lights on, the fibre port is in full duplex mode.
Off	$:$When the green light is off, the fibre port is in half duplex mode.	

Configuration

This Switch is an unmanaged, but "smart" Switch because programmable administration parameters make the Switch operate more effectively than unmanaged (dumb) switches. This chapter will describe how to configure the Switch.

Console Port (RS-232 DCE)
The console configuration requires connecting a terminal, such as a Workstation or a PC running a terminal emulation program (such as HyperTerminal, which is automatically installed with Microsoft Windows) a to the RS-232 DCE console port of the Switch.
The console port is set at the factory for the following configuration:

■	Baud rate:	9,600
$■$	Data width:	8 bits

Parity:	none
Stop bits:	1
Flow control:	None

Make sure the terminal or PC you are using to make this connection is configured to match these settings.

For example, run the Hyperterminal program packaged with Windows 98/ME/2000/XP, the process will procede as follow:

Step 1. Click Start Accessories Communications Hyper Terminal (Figure 6), and then the Connection Description screen will be shown as Figure 7.

Figure 6. Start Hyper Terminal function
Step 2. Enter a name in the blank to set up a new connection, and then press $O K$.

16

Figure 7. Connection Description

Step 3. The Connect To screen will appear as below. Pull down the Connect using and choose the COM port that the Switch has been connected to, then press $O K$.

Figure 8. Connect To
Step 4. Make sure the Switch serial port parameters have been set as per the factory default settings (Figure 9). Click $O K$ to configure the Switch.

Figure 9. Port Settings

Configuring the Switch

The 24-Port 10/100Mbps Fast Ethernet Smart Switch has a menu-driven console interface for smart switch configuration. The Switch can be configured through the serial port. A network administrator can manage, control and monitor the switch from the console program. This section indicates how to configure the Switch to enable its smart functions including:

Setup

There are two items such as Port Configuration and VLAN, shown in the Setup screen. Each function of these two items will be illustrated in the following sections.

> System

18

In the System screen, Factory Reset, Change Password, Confirm Password, Refresh Time, and Login Timeout, can be viewed and changed. System Uptime can't be altered and governed by the Switch.

$>$ File

The Switch can be uploaded or downloaded its configuration file by using Upload Configuration or Download Configuration in the File setting screen.

Statistics

In the Statistics menu screen, each port's data transferring and receiving status can be viewed, but can't be changed.

Login

First execute the terminal emulation program on the remote workstation, and turn on the Switch. When login to the Switch, the following screen (Figure 10) prompt:

Password:

Figure 10. Login
Input the password in the blank, and then press Enter to login Main Menu. If you manage the Switch for the first time, you should input the factory default password "admin" to login to the Switch. To change the password, first highlight System Change Password to input your new password, and then highlight Confirm Password to input your new password again to ascertain it.

Main Menu

The main menu appears, as shown in Figure 11. Find the console keys in the lower part of the screen. Move to highlight a desired option by using Up Arrow, Down Arrow and Tab keys, and then press Enter key to confirm. There are four options: Setup, System, File, and Statistics, shown in the Main Menu screen.

Figure 11. Main Menu

Configuring Setup Setting
Note that there are two items, Port Configuration and VLAN in Setup menu, shown as Figure 12.

Figure 12. Setup Menu

Port Configuration

In Port Configuration menu (Figure 13), each port's (port 25: Fibre Port) Speed, Flow Control, and QoS can be controlled. Link Status is automatically determined by the Switch and can't be shifted.

Figure 13. Port Configuration

22

(1) Speed

There are five modes-Auto, 100M Full, 100M Half, 10M Full, and 10M Half-for speed selections. To change the speed setting, highlight Port and enter the port number to select the desired port, next highlight Speed, click Enter, and use Space Bar to switch between the five different options.

(2) Flow Control

This setting determines whether or not the Switch will be handling flow control. To change the flow control setting, highlight Port and enter the port number to select the desired port. Set FlowCtrl to $\boldsymbol{O N}$ for avoiding data transfer overflow. Or set it to $\boldsymbol{O F F}$ where there is either no flow control, or this is handled by other hardware/software management.

(3) QoS

If some ports need to have priority for data management transfer, then QoS can be changed. QoS has two settings to choose from, High and Low. The default setting for QoS on all ports is High. To change the QoS setting, highlight Port and enter the port number to select the desired port. Set QoS as required to determine which ports will always transfer their data first.

(4) Link Status

This value is automatically determined by the Switch and can't be changed. If there is a valid connection to the Switch through the indicated port, the Link Status will show the connection speed. The status will be Down if there is no connection through that port.

VLAN (Virtual Local Area Network)

Grouping of individual ports into a small "virtual" network of their own being independent of all other ports. To change the VLAN, locate the port that needs to be set, select "V" for joining the VLAN group and "-" for not joining. The default setting of VLAN is shown as Figure 14.

Figure 14. VLAN Configuration
For example, there are five computers (PC1~PC5) connected to the Switch's port $1 \sim 5$. They had been divided into two VLAN groups: VLAN1 (PC1~PC4) and VLAN2 (PC2~PC5). There is no way to connect PC1 and PC5, as shown in Figure 15. If PC1 has to connect to PC5, it should with it in the same VLAN.

Figure 15. There is no connection between PC1 and PC5
Using VLAN, it can divide the Switch into many independent small switches. For example, in Figure 16, the Switch has been divided into four VLAN groups. All VLAN groups are independent and there's no link between each VLAN group. The Switch can be regarded as four smaller switches.

Figure 16. Dividing the Switch into two smaller switches

Configuring System Setting
The System Configuration Menu screen (shown in Figure 17) indicates the following information:
> Factory Reset: Press to turn back to factory setting once the setting in blur.
> Change Password: To change the input path password.
$>$ Confirm Password: To confirm the new input password.
Refresh Time: To set the refresh time of the device for Statistics.

Login Timeout: Set the console idle time-out to log out the smart menu when forgot to log out.
> System Uptime: Indicate the time on powered up the Switch.

Figure 17. System Setting

Configuring File Setting

The Switch can have its configuration files uploaded or downloaded by using the File screen shown in Figure 18.
$>$ Upload Configuration: Select this for uploading the configuration file to the device.
> Download Configuration: Select this for copying or backup the current status.

Figure 18. File installation

Statistics
> Statistics Menu
In the Statistics menu screen (shown Figure 19), all ports' transmit (Tx) and receive (Rx) status summaries can be viewed.

Figure 19. Statistics

Statistics Detail

Highlight Port and enter port number to view the statistics details (see Figure 20).

Figure 20. Statistics Detail

TECHNICAL SPECIFICATIONS

General	
Standards	IEEE 802.3 10BASE-T Ethernet IEEE 802.3u 100 BASE-TX, 100BASE-FX Fast Ethernet
Protocol	CSMA/CD
Data Transfer Rate	Ethernet: 10Mbps (half duplex), 20Mbps (full duplex) Fast Ethernet: 100 Mbps (half duplex), 200Mbps (full duplex)
Topology	Star
Network Media	10BASET: 2-pair UTP/STP Cat. 3, 4, 5/5e; up to 100 m 100BASE-TX: 2-pair UTP/STP Cat. $5 / 5 \mathrm{e}$; up to 100 m Fibre module: $50 / 125$ or $62.5 / 125 \mu \mathrm{~m}$ multimode fibre with SC connector
Number of Ports	$24 \times 10 / 100 \mathrm{Mbps}$ Auto-MDIX STP ports $1 \times$ expansion slot for 100BASE-FX fibre module

Physical and Environmental	
AC inputs:	$100 \sim 240 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$ internal universal power supply
Power Consumption:	14 watts. (max.)
Temperature:	Operating: $0^{\circ} \sim 40^{\circ} \mathrm{C}$, Storage: $-10^{\circ} \sim 70^{\circ} \mathrm{C}$
Humidity:	Operating: $10 \% \sim 90 \% \mathrm{RH}$, Storage: $5 \% \sim 90 \% \mathrm{RH}$
Dimensions:	$440 \times 140 \times 44 \mathrm{~mm}$ (W x H x D)
Weight:	2.1 kg
Emissions:	C -tick, FCC Class A, CE Mark Class A, VCCI Class A
Safety:	cUL(1950), CB(IEC60950)
Performance	Store-and-forward
Transmits Method:	768 K bytes per device
RAM Buffer:	4K entries per device
Filtering Address Table:	

Packet	10 Mbps Ethernet: $14,880 / \mathrm{pps}$	
Filtering/Forwarding Rate:	$100 \mathrm{Mbps} \quad$ Fast \quad Ethernet:	
	$148,800 / \mathrm{pps}$	
MAC Address Learning:	Automatic update	

Alloy Computer Products Aust. Pty. Ltd.
Postal Address: PO Box 15, Mulgrave, Vic, 3170
Unit 4, 585 Blackburn Road, Notting Hill, Victoria, 3168, Australia Phone: 039574 9891, Fax: 039561 7412, World Wide Web: www.alloy.com.au

